Za zakazivanje telefonskim putem pozovite 063/687-460 Za zakazivanje telefonskim putem 063/687-460
  1. Pitanje broj: #202826

    Postovani molim vas da mi odgovorite....Zanima me sve o bakteriji MRSA PVL ..kome da se obratim i da li je uopste izleciva...Hvala

    Odgovoreno: 27. 09. 2022.
    • multirezistentni S.aureus, najčešće je intrahospitalna infekcija, u zavisnosti od organa, ili tkiva koje je zahvaćeno, postoji lečenje.Evo u prilogu tekst iz udžbnika

       

       

      MRSA isolates have become common, especially in hospitals. MRSA are resistant to all beta-lactam antibiotics, including cephalosporins and carbapenems; however, they may be susceptible to the newest class of MRSA-active cephalosporins (eg, ceftaroline, ceftobiprole [not available in the US]). Hospital-acquired MRSA are also commonly resistant to many other antibiotics, including erythromycin, clindamycin, and fluoroquinolones. In addition, community-associated MRSA (CA-MRSA) has emerged over the past several years in most geographic regions. CA-MRSA tends to be less resistant to multiple drugs than hospital-acquired MRSA. These strains, although resistant to most beta-lactams, are usually susceptible to TMP/SMX and tetracyclines (minocycline, doxycycline) and are often susceptible to clindamycin, but there is the potential for emergence of clindamycin resistance by strains inducibly resistant to erythromycin (laboratories may report these strains as D-test positive). Vancomycin is effective against most MRSA, sometimes with rifampin and an aminoglycoside added for some serious infections (ie, osteomyelitis, prosthetic joint infections, prosthetic valve endocarditis). An alternative drug (daptomycin, linezolid, tedizolid, dalbavancin, oritavancin, telavancin, tigecycline, omadacycline, lefamulin, eravacycline, delafloxacin, quinupristin/dalfopristin, TMP/SMX, possibly ceftaroline) should be considered when treating MRSA strains with a vancomycin minimum inhibitory concentration (MIC) of ≥ 1.5 mcg/mL.

      Vancomycin-resistant S. aureus (VRSA; MIC ≥ 16 mcg/mL) and vancomycin-intermediate-susceptible S. aureus (VISA; MIC 4 to 8 mcg/mL) strains have appeared in the US. These organisms require linezolid, tedizolid, quinupristin/dalfopristin, daptomycin, TMP/SMX, delafloxacin, oritavancin, or ceftaroline. Dalbavancin and telavancin are active against VISA but have little activity against VRSA.

      Because incidence of MRSA has increased, initial empiric treatment for serious staphylococcal infections (particularly those that occur in a health care setting) should include a drug with reliable activity against MRSA. Thus, appropriate drugs include the following:

      • For proven or suspected bloodstream infections, vancomycin or daptomycin

      • For pneumonia, vancomycin, telavancin, or linezolid (because daptomycin is not reliably active in the lungs)

      Table

      MRSA isolates have become common, especially in hospitals. MRSA are resistant to all beta-lactam antibiotics, including cephalosporins and carbapenems; however, they may be susceptible to the newest class of MRSA-active cephalosporins (eg, ceftaroline, ceftobiprole [not available in the US]). Hospital-acquired MRSA are also commonly resistant to many other antibiotics, including erythromycin, clindamycin, and fluoroquinolones. In addition, community-associated MRSA (CA-MRSA) has emerged over the past several years in most geographic regions. CA-MRSA tends to be less resistant to multiple drugs than hospital-acquired MRSA. These strains, although resistant to most beta-lactams, are usually susceptible to TMP/SMX and tetracyclines (minocycline, doxycycline) and are often susceptible to clindamycin, but there is the potential for emergence of clindamycin resistance by strains inducibly resistant to erythromycin (laboratories may report these strains as D-test positive). Vancomycin is effective against most MRSA, sometimes with rifampin and an aminoglycoside added for some serious infections (ie, osteomyelitis, prosthetic joint infections, prosthetic valve endocarditis). An alternative drug (daptomycin, linezolid, tedizolid, dalbavancin, oritavancin, telavancin, tigecycline, omadacycline, lefamulin, eravacycline, delafloxacin, quinupristin/dalfopristin, TMP/SMX, possibly ceftaroline) should be considered when treating MRSA strains with a vancomycin minimum inhibitory concentration (MIC) of ≥ 1.5 mcg/mL.

      Vancomycin-resistant S. aureus (VRSA; MIC ≥ 16 mcg/mL) and vancomycin-intermediate-susceptible S. aureus (VISA; MIC 4 to 8 mcg/mL) strains have appeared in the US. These organisms require linezolid, tedizolid, quinupristin/dalfopristin, daptomycin, TMP/SMX, delafloxacin, oritavancin, or ceftaroline. Dalbavancin and telavancin are active against VISA but have little activity against VRSA.

      Because incidence of MRSA has increased, initial empiric treatment for serious staphylococcal infections (particularly those that occur in a health care setting) should include a drug with reliable activity against MRSA. Thus, appropriate drugs include the following:

      • For proven or suspected bloodstream infections, vancomycin or daptomycin

      • For pneumonia, vancomycin, telavancin, or linezolid (because daptomycin is not reliably active in the lungs)

      Table

      MRSA isolates have become common, especially in hospitals. MRSA are resistant to all beta-lactam antibiotics, including cephalosporins and carbapenems; however, they may be susceptible to the newest class of MRSA-active cephalosporins (eg, ceftaroline, ceftobiprole [not available in the US]). Hospital-acquired MRSA are also commonly resistant to many other antibiotics, including erythromycin, clindamycin, and fluoroquinolones. In addition, community-associated MRSA (CA-MRSA) has emerged over the past several years in most geographic regions. CA-MRSA tends to be less resistant to multiple drugs than hospital-acquired MRSA. These strains, although resistant to most beta-lactams, are usually susceptible to TMP/SMX and tetracyclines (minocycline, doxycycline) and are often susceptible to clindamycin, but there is the potential for emergence of clindamycin resistance by strains inducibly resistant to erythromycin (laboratories may report these strains as D-test positive). Vancomycin is effective against most MRSA, sometimes with rifampin and an aminoglycoside added for some serious infections (ie, osteomyelitis, prosthetic joint infections, prosthetic valve endocarditis). An alternative drug (daptomycin, linezolid, tedizolid, dalbavancin, oritavancin, telavancin, tigecycline, omadacycline, lefamulin, eravacycline, delafloxacin, quinupristin/dalfopristin, TMP/SMX, possibly ceftaroline) should be considered when treating MRSA strains with a vancomycin minimum inhibitory concentration (MIC) of ≥ 1.5 mcg/mL.

      Vancomycin-resistant S. aureus (VRSA; MIC ≥ 16 mcg/mL) and vancomycin-intermediate-susceptible S. aureus (VISA; MIC 4 to 8 mcg/mL) strains have appeared in the US. These organisms require linezolid, tedizolid, quinupristin/dalfopristin, daptomycin, TMP/SMX, delafloxacin, oritavancin, or ceftaroline. Dalbavancin and telavancin are active against VISA but have little activity against VRSA.

      Because incidence of MRSA has increased, initial empiric treatment for serious staphylococcal infections (particularly those that occur in a health care setting) should include a drug with reliable activity against MRSA. Thus, appropriate drugs include the following:

      • For proven or suspected bloodstream infections, vancomycin or daptomycin

      • For pneumonia, vancomycin, telavancin, or linezolid (because daptomycin is not reliably active in the lungs)

       

       

       

Ostavite komentar


ZAKAZIVANJE 063/687-460